Home Search Collections Journals About Contact us My IOPscience

The magnetic field dependence of the electronic specific heat of $Ce(Fe_{1-x}Co_x)_2$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys.: Condens. Matter 9 9347 (http://iopscience.iop.org/0953-8984/9/43/018)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.209 The article was downloaded on 14/05/2010 at 10:53

Please note that terms and conditions apply.

The magnetic field dependence of the electronic specific heat of $Ce(Fe_{1-x}Co_x)_2$

H Wada, T Harada and M Shiga

Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

Received 7 July 1997

Abstract. The magnetic field dependence of the specific heat was examined for CeFe₂ and Ce(Fe_{0.9}Co_{0.1})₂. The former compound is a simple ferromagnet, while the latter shows an antiferromagnetic-to-ferromagnetic (AF-to-F) transition with increasing temperature and undergoes a metamagnetic transition at around 6 T at low temperatures. The results indicate that the electronic specific heat coefficient, γ , is larger in the F state than in the AF state. These results suggest the importance of the electronic specific heat as regards the entropy change associated with the AF-to-F transition. In the F state, a decrease of γ with increasing field was observed for Ce(Fe_{0.9}Co_{0.1})₂ as well as for CeFe₂. The origin of this behaviour is also discussed.

1. Introduction

The Laves phase compound CeFe₂ is a ferromagnet with $T_{\rm C} = 230$ K. The substitution of Co for Fe destabilizes ferromagnetism and an antiferromagnetic state appears at low temperatures for 0.04 < x < 0.3 below T_0 which is lower than T_C [1]. In this concentration range, the system undergoes an antiferromagnetic-to-ferromagnetic (AF-to-F) transition with increasing temperature. On further substituting Co for Fe, an F state reappears in the ground state. Previously, we have measured the specific heat of $Ce(Fe_{1-x}Co_x)_2$ at low temperatures and evaluated the electronic specific heat coefficient, γ , in both the F and AF states [2]. The results are shown in figure 1, in which a complicated concentration dependence of γ is observed. Noting that the compounds with x = 0.1 and 0.2 are antiferromagnetic, it is likely that the γ -value in the F state ($\gamma_{\rm F}$) is larger than that in the AF state ($\gamma_{\rm AF}$). This is explained by a simple band theory, which predicts a decrease in the density of states (DOS) at $E_{\rm F}$ in the AF state due to the formation of a new energy gap. In reference [3], we pointed out the importance of the difference between $\gamma_{\rm F}$ and $\gamma_{\rm AF}$ in the AF-to-F transition. The difference in γ contributes to an entropy change at T_0 . This is the electronic entropy change expressed as $(\gamma_{\rm F} - \gamma_{\rm AF})T_0$. The total entropy change at T_0 was evaluated as 1.2 J K⁻¹ mol⁻¹ for x = 0.1 from specific heat measurements. On the other hand, we have $\gamma_{\rm AF} = 36.6$ mJ K⁻² mol⁻¹ from figure 1. Although a $\gamma_{\rm F}$ for x = 0.1 is not obtained from the experiments, we can roughly estimate $\gamma_{\rm F} \sim 50$ mJ K⁻² mol⁻¹ from the values for x = 0 (47.5 mJ K⁻² mol⁻¹) and x = 0.3 (54.6 mJ K⁻² mol⁻¹). On putting these values and $T_0 = 80.8$ K into the above expression, the electronic entropy change is evaluated as 1.1 J K^{-1} mol⁻¹, which is comparable to the total entropy change. In reference [3], we also discussed a relation between T_0 and the metamagnetic transition field, H_0 . Assuming $C_F(T) - C_{AF}(T) = (\gamma_F - \gamma_{AF})T$, where $C_F(T)$ and $C_{AF}(T)$ represent

0953-8984/97/439347+06\$19.50 © 1997 IOP Publishing Ltd

9347

the specific heat in the F state and the AF state, respectively, we obtained a simple relation, $H_0 = (\gamma_F - \gamma_{AF})T_0^2/2 \Delta M$, where ΔM is the difference in magnetization between the two states at H_0 . Putting the above parameters into this equation, we have $H_0 = 3.9$ T, which compares favourably with the experimental value of 5.6 T. Moreover, a T^2 -dependence of H_0 was derived near T_0 , which is in accordance with the observations. These results are strongly indicative that the electronic specific heat plays an important role in the AF-to-F transition in Ce(Fe_{1-x}Co_x)₂.

Figure 1. The concentration dependence of the electronic specific heat coefficient, γ , of Ce(Fe_{1-x}Co_x)₂ [2]. Closed and open circles represent the ferromagnetic and antiferromagnetic compounds, respectively. A closed triangle indicates the γ -value of Ce(Fe_{0.9}Co_{0.1})₂ in the hypothetical ferromagnetic state, which was estimated in the present study (see the text).

Figure 2. The specific heat of Ce(Fe_{0.9}Co_{0.1})₂ in fields of 0, 2, 4 and 8 T plotted in the form of C/T versus T^2 . The solid lines are the results of a least-squares fitting of the data to $C/T = \gamma + \beta T^2$.

Since the AF-to-F transition is induced by a magnetic field of 6 T for x = 0.1, γ_F and γ_{AF} can be directly measured for the same sample from the specific heat measurements under magnetic fields. In this paper, we report the magnetic field dependence of γ for Ce(Fe_{0.9}Co_{0.1})₂. For comparison, measurements on ferromagnetic CeFe₂ were also carried out.

2. Experiments

The samples were prepared by argon arc melting. For x = 0.1, we used the same sample as was used for the specific heat measurements made previously [3]. A CeFe₂ sample was newly prepared and was annealed at 850 °C for one week in an evacuated quartz tube. No phase other than C15 was detected by x-ray diffraction. The specific heat was measured by a conventional heat pulse method from 1.4 to 15 K under a magnetic field up to 14 T by using a superconducting magnet. A calibrated carbon-glass thermometer was used for the temperature measurements. The magnetization for x = 0.1 was measured by using a SQUID from 5 to 30 K.

Figure 3. A C/T versus T^2 plot for Ce(Fe_{0.9}Co_{0.1})₂ at 6 T. The two lines are the results of a least-squares fitting in lower-temperature region (50 K² < T^2 < 90 K²) and in the higher-temperature region (130 K² < T^2 < 220 K²).

Figure 4. The magnetization versus temperature curve of $Ce(Fe_{0.9}Co_{0.1})_2$ at 6 T.

3. Results

Figure 2 shows the temperature dependence of the specific heat of $Ce(Fe_{0.9}Co_{0.1})_2$ in fields of 0, 2, 4 and 8 T plotted in the form of C/T versus T^2 . The compound is antiferromagnetic below 4 T, while it is ferromagnetic at 8 T in this temperature range. Each of the C/T versus T^2 curves above 7 K is well approximated by the straight line $C/T = \gamma + \beta T^2$. A small anomaly at 6.5 K is not intrinsic but is due to an impurity phase, as referred to previously [3]. The amount of this impurity phase is quite small (less than 0.6%). The C/T versus T^2 plots lie on the same line for 0–4 T, while the plot for 8 T shows a considerable shift with a larger γ -value. These results provide direct evidence that $\gamma_{AF} < \gamma_F$ in Ce(Fe_{1-x}Co_x)₂. The slope of the plot, β , is slightly larger for the F state than for the AF state. The C/T versus T^2 plot for an intermediate field of 6 T is shown in figure 3. Interestingly, the points seem to lie in a straight line for 50 K² < T^2 < 90 K², while they deviate above $T^2 = 90$ K² and eventually lie on another straight line for $T^2 > 150 \text{ K}^2$. This behaviour is understandable, if the system undergoes an AF-to-F transition at around 10 K. To confirm this, we measured the magnetization versus temperature curve of $Ce(Fe_{0.9}Co_{0.1})_2$ at 6 T. The result is shown in figure 4, in which the magnetization rapidly increases at around 10 K, indicating the AF-to-F transition. Therefore, the nonlinear behaviour of the C/T versus T^2 curve at 6 T is ascribed to the change of a magnetic state.

Figure 5 shows the C/T versus T^2 plots of Ce(Fe_{0.9}Co_{0.1})₂ in the F state above 8 T. In contrast to the plots for the AF state, we observed a definite shift of the straight line towards a smaller value of C/T with increasing magnetic field from 8 T to 14 T. These results indicate that γ_F decreases with increasing field for the F state. In order to study the magnetic field dependence of γ_F over a wide field range, we measured the specific heat of ferromagnetic CeFe₂ in fields of 0–14 T. The results at 0, 8 and 14 T are displayed in

Figure 5. C/T versus T^2 plots for Ce(Fe_{0.9}Co_{0.1})₂ for fields of 8–14 T. The solid lines are the results of least-squares fitting of the data to a straight line.

Figure 6. C/T versus T^2 plots for CeFe₂ for fields of 0, 8 and 14 T. The solid lines are the results of least-squares fitting of the data to a straight line.

figure 6. Similarly to the case for Ce(Fe_{0.9}Co_{0.1})₂ in the F state, the C/T versus T^2 curve depends on the magnetic field and γ_F decreases as the magnetic field is increased.

The magnetic field dependence of γ for Ce(Fe_{0.9}Co_{0.1})₂ and CeFe₂ is shown in figure 7. Two values of Ce(Fe_{0.9}Co_{0.1})₂ at 6 T were evaluated from the low-temperature region (50 K² < T² < 90 K²) and from the high-temperature region (130 K² < T² < 220 K²), respectively. The γ -value of Ce(Fe_{0.9}Co_{0.1})₂ is nearly field independent for the AF state. It is suddenly raised by the onset of the F state, and this is followed by a decrease with increasing field. On the other hand, the γ -value of CeFe₂ decreases remarkably, from 47 mJ K⁻² mol⁻¹ to 39 mJ K⁻² mol⁻¹, as the magnetic field is increased from 0 to 14 T. The Debye temperature, Θ_D , was also evaluated from β , and is shown in figure 8 as a function of the magnetic field for x = 0.1 and CeFe₂. It is found that Θ_D for x = 0.1 is smaller for the F state than for the AF state, while no field dependence of Θ_D is observed for CeFe₂.

4. Discussion

As shown in figure 7, the present study confirmed that the γ -value is larger for the F state than for the AF state for x = 0.1. Several systems are known to show the AF-to-F transition with increasing temperature, such as FeRh [4], Mn₃GaC [5] and La_{1-x}Y_xMn₂Ge₂ [6]. The hypothesis that $\gamma_F > \gamma_{AF}$ was first proposed for FeRh [7]. Baranov and Khlopkin examined the specific heat under a magnetic field for (Fe_{0.965}Ni_{0.035})₄₉Rh₅₁ [8], where a small amount of Ni is substituted for Fe to reduce the metamagnetic transition field. They found that γ_F is twice as large as γ_{AF} for this alloy. These results are in qualitative agreement with those obtained from the band calculations [9, 10]. It was also pointed out that the electronic specific heat gives a dominant contribution to the entropy change at T_0 in FeRh [7]. In this sense, Ce(Fe_{1-x}Co_x)₂and FeRh are in the same category of AF-to-F transition systems. To confirm our interpretation, band calculations for both the F states and hypothetical AF

Figure 7. The magnetic field dependence of γ for Ce(Fe_{0.9}Co_{0.1})₂ and CeFe₂. The solid line is a curve connecting the points for CeFe₂ smoothly. The dashed line was obtained by shifting the solid line by 3 mJ K⁻² mol⁻¹ to extrapolate the $\gamma_{\rm F}$ -value of Ce(Fe_{0.9}Co_{0.1})₂ to $H \rightarrow 0$.

Figure 8. The magnetic field dependence of the Debye temperature, Θ_D , for Ce(Fe_{0.9}Co_{0.1})₂ and CeFe₂.

states of CeFe₂ are strongly desired.

Unexpectedly, remarkable field effects on γ were observed in the F state for $Ce(Fe_{0.9}Co_{0.1})_2$ and $CeFe_2$. So far, a large field dependence of γ has been reported only for weakly or nearly ferromagnetic metals. We define the reduction factor of γ per unit field, r, as $r = (\gamma(0) - \gamma(H))/\gamma(0)H$. For example, the r-factor of nearly ferromagnetic LuCo₂ is 1% T⁻¹ [11]. Our results revealed that r = 1.2% T⁻¹ for CeFe₂, which is comparable to the value for LuCo₂. A possible origin of the large r for CeFe₂ is the suppression of spin fluctuations by the magnetic field. The γ -value for CeFe₂ at 0 T is quite large (48 mJ K^{-2} mol⁻¹) compared with the values for other Laves phase compounds of rareearth elements and Fe [12]. This is attributable to spin fluctuations, as pointed out by Gratz et al [13]. Furthermore, the coefficient of the T^2 -dependence of the electrical resistivity of CeFe₂ is ten times as large as that of YFe₂ [13]. These facts strongly suggest that the thermal properties at low temperatures are dominated by spin fluctuations in CeFe₂. It is expected that spin fluctuations are quenched by applying a magnetic field. Therefore, the enhancement of γ is reduced with increasing field. This interpretation can be supported by the fact that no field dependence of γ was observed for the AF state with x = 0.1, because antiferromagnetic fluctuations are not suppressed by a static field.

Finally, we now complement the discussion on the importance of the electronic specific heat in the AF-to-F transition given in reference [3] and summarized in section 1 of the present paper. As described there, the γ -value for the F state of Ce(Fe_{0.9}Co_{0.1})₂ is required for quantitative discussion. Since γ_F for x = 0.1 is field dependent, the value at H = 0 T has to be estimated. We assume that γ_F for Ce(Fe_{0.9}Co_{0.1})₂ shows a similar field dependence to that for CeFe₂. Shifting the γ_F versus x curve of CeFe₂ by 3 mJ K⁻² mol⁻¹, we obtain

the dashed line in figure 7, which enables us to extrapolate the $\gamma_{\rm F}$ versus *H* curve of Ce(Fe_{0.9}Co_{0.1})₂ to H = 0 T. The estimated value of γ in the hypothetical ferromagnetic state for x = 0.1 at 0 T is 50 mJ K⁻² mol⁻¹. This indicates the validity of our previous estimation of it from the concentration dependence of γ , although it was estimated rather roughly. Another fact found here is that the Debye temperature of Ce(Fe_{0.9}Co_{0.1})₂ also depends on the magnetic state, as shown in figure 8. This result suggests that there is some contribution from the lattice entropy at T_0 , which was neglected in our previous discussion. However, the correct estimation of the lattice entropy change at T_0 is quite difficult, because the lattice specific heat cannot be described by a simple Debye model with a constant value of $\Theta_{\rm D}$. As described in reference [3], we could not find any significant difference in the lattice specific heat between CeFe₂ and Ce(Fe_{0.9}Co_{0.1})₂ below and above T_0 . It is likely that the contribution of the lattice entropy change at T_0 is small, if it exists at all, and that the entropy change is dominated by the electronic entropy change in this system.

Acknowledgments

The authors are indebted to Dr A Oyamada and K Hashi for kind cooperation in a SQUID measurement. Thanks are also due to R Iehara for technical support and to S Tomekawa for assistance in the specific heat measurements.

References

- Rastogi A K and Murani A P 1987 Proc. 5th Int. Conf. on Valence Fluctuations (Bangalore) (New York: Plenum) p 437
- [2] Wada H, Nishigori M and Shiga M 1991 J. Phys.: Condens. Matter 3 2083
- [3] Wada H, Nishigori M and Shiga M 1993 J. Phys. Soc. Japan 62 1337
- [4] Kouvel J S and Hartelius C C 1962 J. Appl. Phys. Suppl. 33 1343
- [5] Bouchaud J P, Fruchart R, Pauthenet R, Guillot M, Bartholin H and Chaissé F 1966 J. Appl. Phys. 37 971
- [6] Fujii H, Isoda M, Okamoto T, Shigeoka T and Iwata N 1986 J. Magn. Magn. Mater. 54-57 1345
- [7] Tu P, Heeger A J, Kouvel J S and Comly J B 1969 J. Appl. Phys. 40 1368
- [8] Baranov N V and Khlopkin M N 1990 Sov. Phys.-Solid State 32 1465
- [9] Koenig C 1982 J. Phys. F: Met. Phys. 12 1123
- [10] Hasegawa H 1987 J. Magn. Magn. Mater. 66 175
- [11] Ikeda K, Gschneidner K A Jr, Stierman R J, Tsang T W E and McMasters O D 1984 Phys. Rev. B 29 5039
- [12] Butera R A, Clinton T J, Moldovan A G, Sankar S G and Gschneidner K A Jr 1979 J. Appl. Phys. 50 7492
- [13] Gratz E, Bauer E, Nowotny H, Burkov A T and Vedernikov M V 1989 Solid State Commun. 69 1007